Regulation of retinal ganglion cell production by Sonic hedgehog.

نویسندگان

  • X M Zhang
  • X J Yang
چکیده

Previous work has shown that production of retinal ganglion cells is in part regulated by inhibitory factors secreted by ganglion cell themselves; however, the identities of these molecules are not known. Recent studies have demonstrated that the signaling molecule Sonic hedgehog (Shh) secreted by differentiated retinal ganglion cells is required to promote the progression of ganglion cell differentiation wave front and to induce its own expression. We present evidence that Shh signals play a role to negatively regulate ganglion cell genesis behind the differentiation wave front. Higher levels of Shh expression are detected behind the wave front as ganglion cells accumulate, while the Patched 1 receptor of Shh is expressed in adjacent retinal progenitor cells. Retroviral-mediated overexpression of Shh results in reduced ganglion cell proportions in vivo and in vitro. Conversely, inhibiting endogenous Shh activity by anti-Shh antibodies leads to an increased production of ganglion cells. Shh signals modulate ganglion cell production within the normal period of ganglion cell genesis in vitro without significantly affecting cell proliferation or cell death. Moreover, Shh signaling affects progenitor cell specification towards the ganglion cell fate during or soon after their last mitotic cycle. Thus, Shh derived from differentiated ganglion cells serves as a negative regulator behind the differentiation wave front to control ganglion cell genesis from the competent progenitor pool. Based on these results and other recent findings, we propose that Shh signals secreted by early-differentiated retinal neurons play dual roles at distinct concentration thresholds to orchestrate the progression of retinal neurogenic wave and the emergence of new neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinal ganglion cell-derived sonic hedgehog locally controls proliferation and the timing of RGC development in the embryonic mouse retina.

The timing of cell cycle exit and temporal changes in the developmental competence of precursor cells are key components for the establishment of the normal complement of cell types in the mammalian retina. The identity of cell extrinsic cues that control these processes is largely unknown. We showed previously in mouse retina that sonic hedgehog (Shh) signalling from retinal ganglion cells (RG...

متن کامل

Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration.

The stereotypical projection of retinal ganglion cell (RGC) axons to the optic disc has served as a good model system for studying axon guidance. By both in vitro and in vivo experiments, we show that a secreted molecule, Sonic hedgehog (Shh), may play a critical role in the process. It is expressed in a dynamic pattern in the ganglion cell layer with a relatively higher expression in the cente...

متن کامل

Sonic hedgehog promotes rod photoreceptor differentiation in mammalian retinal cells in vitro.

The hedgehog gene family encodes secreted proteins important in many developmental patterning events in both vertebrates and invertebrates. In the Drosophila eye disk, hedgehog controls the progression of photoreceptor differentiation in the morphogenetic furrow. To investigate whether hedgehog proteins are also involved in the development of the vertebrate retina at stages of photoreceptor dif...

متن کامل

Retinal ganglion cell-derived sonic hedgehog signaling is required for optic disc and stalk neuroepithelial cell development.

The development of optic stalk neuroepithelial cells depends on Hedgehog (Hh) signaling, yet the source(s) of Hh protein in the optic stalk is unknown. We provide genetic evidence that sonic hedgehog (Shh) from retinal ganglion cells (RGCs) promotes the development of optic disc and stalk neuroepithelial cells. We demonstrate that RGCs express Shh soon after differentiation, and cells at the op...

متن کامل

Control of retinal ganglion cell axon growth: a new role for Sonic hedgehog.

Retinal ganglion cell (RGC) axons grow towards the diencephalic ventral midline during embryogenesis guided by cues whose nature is largely unknown. We provide in vitro and in vivo evidence for a novel role of Sonic hedgehog (SHH) as a negative regulator of growth cone movement. SHH suppresses both the number and the length of neurites emerging from the chick retina but not from neural tube or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 128 6  شماره 

صفحات  -

تاریخ انتشار 2001